A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks
نویسندگان
چکیده
In this paper we propose a reduced basis hybrid method (RBHM) for the approximation of partial differential equations in domains represented by complex networks where topological features are recurrent. The RBHM is applied to Stokes equations in domains which are decomposable into smaller similar blocks that are properly coupled. The RBHM is built upon the reduced basis element method (RBEM) and it takes advantage from both the reduced basis methods (RB) and the domain decomposition method. We move from the consideration that the blocks composing the computational domain are topologically similar to a few reference shapes. On the latter, representative solutions, corresponding to the same governing partial differential equations, are computed for different values of some parameters of interest, representing, for example, the deformation of the blocks. A generalized transfinite mapping is used in order to produce a global map from the reference shapes of each block to any deformed configuration. The desired solution on the given original computational domain is recovered as projection of the previously precomputed solutions and then glued across sub-domain interfaces by suitable coupling conditions. The geometrical parametrization of the domain, by transfinite mapping, induces non-affine parameter dependence: an empirical interpolation technique is used to recover an approximate affine parameter dependence and a sub–sequent offline/online decomposition of the reduced basis procedure. This computational decomposition yields a considerable reduction of the problem complexity. Results computed on some combinations of 2D and 3D geometries representing cardiovascular networks show the advantage of the method in terms of reduced computational costs and the quality of the coupling to guarantee continuity of both stresses, pressure and velocity at sub-domain interfaces.
منابع مشابه
Synchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit
Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...
متن کاملReduced basis method for the Stokes equations in decomposable parametrized domains using greedy optimization
Flow simulations in pipelined channels and several kinds of parametrized configurations have a growing interest in many life sciences and industrial applications. Applications may be found in the analysis of the blood flow in specific compartments of the circulatory system that can be represented as a combination of few deformed vessels from reference ones, e.g. pipes. We propose a solution app...
متن کاملReduced basis method for the Stokes equations in decomposable domains using greedy optimization
Flow simulations in pipelined channels and several kinds of parametrized configurations have a growing interest in many life sciences and industrial applications. Applications may be found in the analysis of the blood flow in specific compartments of the circulatory system that can be represented as a combination of few deformed vessels from reference ones, e.g. pipes. We propose a solution app...
متن کاملDesign and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array
In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...
متن کاملReduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries
The aim of this work is to solve parametrized partial differential equations in computational domains represented by networks of repetitive geometries by combining reduced basis and domain decomposition techniques. The main idea behind this approach is to compute once, locally and for few reference shapes, some representative finite element solutions for different values of the parameters and w...
متن کامل